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There are several computer applications that must deal with a large amount

of data. Examples include the analysis of scientific data sets, the processing of

financial transactions, and the organization and maintenance of databases (such as

telephone directories). In fact, the amount of data that must be dealt with is often

too large to fit entirely in the internal memory of a computer.

In order to accommodate large data sets, computers have a hierarchy of dif-

ferent kinds of memories, which vary in terms of their size and distance from the

CPU. Closest to the CPU are the internal registers that the CPU itself uses. Access

to such locations is very fast, but there are relatively few such locations. At the

second level in the hierarchy is the cache memory. This memory is considerably

larger than the register set of a CPU, but accessing it takes longer (and there may

even be multiple caches with progressively slower access times). At the third level

in the hierarchy is the internal memory, which is also known as main memory, core

memory, or random access memory. The internal memory is considerably larger

than the cache memory, but also requires more time to access. Finally, at the high-

est level in the hierarchy is the external memory, which usually consists of disks,

CDs, DVDs, or tapes. This memory is very large, but it is also very slow. Thus, the

memory hierarchy for computers can be viewed as consisting of four levels, each

of which is larger and slower than the previous level. (See Figure 20.1.)
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Cache

Internal Memory

External Memory

CPU

Figure 20.1: The memory hierarchy.

In most applications, however, only two levels really matter—the one that can

hold all the data items in our problem and the level just below that one. Bring-

ing data items in and out of the higher memory that can hold all items will typ-

ically be the computational bottleneck in this case. In this chapter, we focus on

algorithms that accommodate this phenomenon or facilitate it, including B-trees,

external-memory sorting, and online caching algorithms.
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20.1 External Memory

Which two levels matter most to solving a particular problem depends on the size

of that problem. For a problem that can fit entirely in main memory, the important

two levels are the cache memory and the internal memory. Access times for internal

memory can be as much as 10 to 100 times longer than those for cache memory. It is

desirable, therefore, to be able to perform most memory accesses in cache memory.

For a problem that does not fit entirely in main memory, on the other hand, the

important two levels are the internal memory and the external memory. Here the

differences are even more dramatic, for access times for disks, the usual general-

purpose external-memory device, are typically as much as 100,000 to 1,000,000

times longer than those for internal memory.

To put this latter figure into perspective, imagine there is a student in Baltimore

who wants to send a request-for-money message to his parents in Chicago. If the

student sends his parents an email message, it can arrive at their home computer in

about five seconds. Think of this mode of communication as corresponding to an

internal-memory access by a CPU. A mode of communication, corresponding to

an external-memory access that is 500,000 times slower, would be for the student

to walk to Chicago and deliver his message in person, which would take about a

month if he can average 20 miles per day. Thus, we should make as few accesses

to external memory as possible.

Hierarchical Memory Management

Most algorithms are not designed with the memory hierarchy in mind, in spite of

the great variance between access times for the different levels. Indeed, all of the

algorithm analysis described in this book so far have assumed that all memory ac-

cesses are equal. This assumption might seem, at first, to be a great oversight—and

one we are only addressing now in this chapter—but there are two fundamental

justifications for why it is actually a reasonable assumption to make.

The first justification is that it is often necessary to assume that all memory ac-

cesses take the same amount of time, since specific device-dependent information

about memory sizes is often hard to come by. In fact, information about memory

size may be impossible to get. For example, a Java program that is designed to

run on many different computer platforms cannot be defined in terms of a specific

computer architecture configuration. We can certainly use architecture-specific in-

formation, if we have it (and we will show how to exploit such information later

in this chapter). But once we have optimized our software for a certain architec-

ture configuration, our software will no longer be device-independent. Fortunately,

such optimizations are not always necessary, primarily because of the second justi-

fication for the equal-time, memory-access assumption.
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The second justification for the memory-access equality assumption is that op-

erating system designers have developed general mechanisms that allow for most

memory accesses to be fast. These mechanisms are based on two important locality-

of-reference properties that most software possesses:

• Temporal locality: If a program accesses a certain memory location, then

it is likely to access this location again in the near future. For example, it is

quite common to use the value of a counter variable in several different ex-

pressions, including one to increment the counter’s value. In fact, a common

adage among computer architects is that “a program spends 90 percent of its

time in 10 percent of its code.”

• Spatial locality: If a program accesses a certain memory location, then it is

likely to access other locations that are near this one. For example, a program

using an array is likely to access the locations of this array in a sequential or

near-sequential manner.

Computer scientists and engineers have performed extensive software profiling ex-

periments to justify the claim that most software possesses both of these kinds of

locality-of-reference. For example, a for-loop used to scan through an array will

exhibit both kinds of locality.

Caching and Blocking

Temporal and spatial localities have, in turn, given rise to two fundamental design

choices for two-level computer memory systems (which are present in the interface

between cache memory and internal memory, and also in the interface between

internal memory and external memory).

The first design choice is called virtual memory. This concept consists of pro-

viding an address space as large as the capacity of the secondary-level memory, and

of transferring into the primary-level memory, data located in the secondary level,

when they are addressed. Virtual memory does not limit the programmer to the

constraint of the internal memory size. The concept of bringing data into primary

memory is called caching, and it is motivated by temporal locality. For, by bring-

ing data into primary memory, we are hoping that it will be accessed again soon,

and we will be able to quickly respond to all the requests for this data that come in

the near future.

The second design choice is motivated by spatial locality. Specifically, if data

stored at a secondary-level memory location l is accessed, then we bring into

primary-level memory a large block of contiguous locations that include the lo-

cation l. (See Figure 20.2.) This concept is known as blocking, and it is motivated

by the expectation that other secondary-level memory locations close to l will soon

be accessed. In the interface between cache memory and internal memory, such

blocks are often called cache lines, and in the interface between internal memory

and external memory, such blocks are often called pages.



20.1. External Memory 573

A block in the external memory address space

A block on disk
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Figure 20.2: Blocks in external memory.

Incidentally, blocking for disk and CD/DVD-ROM drives is also motivated

by the properties of these hardware technologies. A reading arm on a disk or

CD/DVD-ROM takes a relatively long time to position itself for reading a cer-

tain location, but, once the arm is positioned, it can quickly read many contiguous

locations, because the medium it is reading is spinning very fast. (See Figure 20.2.)

Even without this motivation, however, blocking is fully justified by the spatial

locality property that most programs have.

Thus, when implemented with caching and blocking, virtual memory often al-

lows us to perceive secondary-level memory as being faster than it really is. There

is still a problem, however. Primary-level memory is much smaller than secondary-

level memory. Moreover, because memory systems use blocking, any program

of substance will likely reach a point where it requests data from secondary-level

memory, but the primary memory is already full of blocks. In order to fulfill the

request and maintain our use of caching and blocking, we must remove some block

from primary memory to make room for a new block from secondary memory in

this case. Deciding how to do this eviction brings up a number of interesting data

structure and algorithm design issues that we discuss in the remainder of this sec-

tion.

A Model for External Searching

The first problem we address is that of implementing a dictionary for a large col-

lection of items that do not fit in primary memory. Recall that a dictionary stores

key-element pairs (items) subject to insertions, removals, and key-based searches.

Since one of the main applications of large dictionaries is in database systems,

we refer to the secondary-memory blocks as disk blocks. Likewise, we refer to

the transfer of a block between secondary memory and primary memory as a disk

transfer. Even though we use this terminology, the search techniques we discuss

in this section apply also when the primary memory is the CPU cache and the sec-

ondary memory is the main (internal) memory. We use the disk-based viewpoint

because it is concrete and also because it is more prevalent.
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20.2 (2,4) Trees and B-Trees

Some search trees base their efficiency on rules that explicitly bound their depth.

In fact, such trees typically define a depth function, or a “pseudo-depth” function

closely related to depth, so that every external node is at the same depth or pseudo-

depth. In so doing, they maintain every external node to be at depth O(log n) in

a tree storing n elements. These trees are not ideally suited for external memory,

however, and in such scenarios another approach is better.

20.2.1 Multi-Way Search Trees

Some bounded-depth search trees are multi-way trees, that is, trees with internal

nodes that have two or more children. In this section, we describe how multi-way

trees can be used as search trees, including how multi-way trees store items and

how we can perform search operations in multi-way search trees. Recall that the

items that we store in a search tree are pairs of the form (k, x), where k is the key

and x is the element associated with the key.

Let v be a node of an ordered tree. We say that v is a d-node if v has d children.

We define a multi-way search tree to be an ordered tree T that has the following

properties (which are illustrated in Figure 20.3a):

• Each internal node of T has at least two children. That is, each internal node

is a d-node, where d ≥ 2.

• Each internal node of T stores a collection of items of the form (k, x), where

k is a key and x is an element.

• Each d-node v of T , with children v1, . . . , vd, stores d−1 items (k1, x1), . . .,
(kd−1, xd−1), where k1 ≤ · · · ≤ kd−1.

• Let us define k0 = −∞ and kd = +∞. For each item (k, x) stored at a node

in the subtree of v rooted at vi, i = 1, . . . , d, we have ki−1 ≤ k ≤ ki.

That is, if we think of the set of keys stored at v as including the special fictitious

keys k0 = −∞ and kd = +∞, then a key k stored in the subtree of T rooted at

a child node vi must be “in between” two keys stored at v. This simple viewpoint

gives rise to the rule that a node with d children stores d − 1 regular keys, and it

also forms the basis of the algorithm for searching in a multi-way search tree.

By the above definition, the external nodes of a multi-way search do not store

any items and serve only as “placeholders.” Thus, we can view a binary search

tree (Section 3.1.1) as a special case of a multi-way search tree. At the other ex-

treme, a multi-way search tree may have only a single internal node storing all the

items. In addition, while the external nodes could be null, we make the simplifying

assumption here that they are actual nodes that don’t store anything.
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Figure 20.3: (a) A multi-way search tree T ; (b) search path in T for key 12 (unsuc-

cessful search); (c) search path in T for key 24 (successful search).
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Whether internal nodes of a multi-way tree have two children or many, however,

there is an interesting relationship between the number of items and the number of

external nodes.

Theorem 20.1: A multi-way search tree storing n items has n+1 external nodes.

We leave the justification of this theorem as an exercise (C-4.11).

Searching in a Multi-Way Tree

Given a multi-way search tree T , searching for an element with key k is simple. We

perform such a search by tracing a path in T starting at the root. (See Figure 20.3b

and c.) When we are at a d-node v during this search, we compare the key k with

the keys k1, . . . , kd−1 stored at v. If k = ki for some i, the search is successfully

completed. Otherwise, we continue the search in the child vi of v such that ki−1 <
k < ki. (Recall that we consider k0 = −∞ and kd = +∞.) If we reach an external

node, then we know that there is no item with key k in T , and the search terminates

unsuccessfully.

Data Structures for Multi-Way Search Trees

In Section 2.3.4, we discussed different ways of representing general trees. Each of

these representations can also be used for multi-way search trees. In fact, in using

a general multi-way tree to implement a multi-way search tree, the only additional

information that we need to store at each node is the set of items (including keys)

associated with that node. That is, we need to store with v a reference to some

container or collection object that stores the items for v.

Recall that when we use a binary tree to represent an ordered dictionary D, we

simply store a reference to a single item at each internal node. In using a multi-way

search tree T to represent D, we must store a reference to the ordered set of items

associated with v at each internal node v of T . This reasoning may at first seem

like a circular argument, since we need a representation of an ordered dictionary

to represent an ordered dictionary. We can avoid any circular arguments, however,

by using the bootstrapping technique, where we use a previous (less-advanced)

solution to a problem to create a new (more-advanced) solution. In this case, boot-

strapping consists of representing the ordered set associated with each internal node

using a dictionary data structure that we have previously constructed (for example,

a lookup table based on an ordered vector, as shown in Section 3.1). In particu-

lar, assuming we already have a way of implementing ordered dictionaries, we can

realize a multi-way search tree by taking a tree T and storing such a dictionary at

each d-node v of T .

The dictionary we store at each node v is known as a secondary or auxil-

iary data structure, for we are using it to support the bigger, primary data struc-

ture. We denote the dictionary stored at a node v of T as D(v). The items we
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store in D(v) will allow us to find which child node to move to next during a

search operation. Specifically, for each node v of T , with children v1, . . . , vd and

set of items, {(k1, x1), . . . , (kd−1, xd−1)}, we store in the dictionary D(v) the

items (k1, x1, v1), (k2, x2, v2), . . . , (kd−1, xd−1, vd−1), (+∞, null, vd). That is,

an item (ki, xi, vi) of dictionary D(v) has key ki and element (xi, vi). Note that

the last item stores the special key +∞.

With the above realization of a multi-way search tree T , processing a d-node

v while searching for an element of T with key k can be done by performing a

search operation to find the item (ki, xi, vi) in D(v) with smallest key greater than

or equal to k, such as in the closestElemAfter(k) operation. We distinguish two

cases:

• If k < ki, then we continue the search by processing child vi. (Note that

if the special key kd = +∞ is returned, then k is greater than all the keys

stored at node v, and we continue the search by processing child vd.)

• Otherwise (k = ki), then the search terminates successfully.

Performance Issues for Multi-Way Search Trees

Consider the space requirement for the above realization of a multi-way search tree

T storing n items. By Theorem 20.1, using any of the common realizations of

ordered dictionaries (Section 6.1) for the secondary structures of the nodes of T ,

the overall space requirement for T is O(n).
Consider next the time spent answering a search in T . The time spent at a

d-node v of T during a search depends on how we realize the secondary data struc-

ture D(v). If D(v) is realized with a vector-based sorted sequence (that is, a lookup

table), then we can process v in O(log d) time. If instead D(v) is realized using

an unsorted sequence (that is, a log file), then processing v takes O(d) time. Let

dmax denote the maximum number of children of any node of T , and let h denote

the height of T . The search time in a multi-way search tree is either O(hdmax) or

O(h log dmax), depending on the specific implementation of the secondary struc-

tures at the nodes of T (the dictionaries D(v)). If dmax is a constant, the running

time for performing a search is O(h), irrespective of the implementation of the

secondary structures.

Thus, the prime efficiency goal for a multi-way search tree is to keep the height

as small as possible, that is, we want h to be a logarithmic function of n, the number

of total items stored in the dictionary. A search tree with logarithmic height, such

as this, is called a balanced search tree. Bounded-depth search trees satisfy this

goal by keeping each external node at exactly the same depth level in the tree.

Next, we discuss a bounded-depth search tree that is a multi-way search tree

that caps dmax at 4. In Section 20.2.3, we discuss a more general kind of multi-way

search tree that has applications where our search tree is too large to completely fit

into the internal memory of our computer.
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20.2.2 (2,4) Trees

In using a multi-way search tree in practice, we desire that it be balanced, that is,

have logarithmic height. The multi-way search tree we study next is fairly easy

to keep balanced. It is the (2, 4) tree, which is sometimes also called the 2-4 tree

or 2-3-4 tree. In fact, we can maintain balance in a (2, 4) tree by maintaining two

simple properties (see Figure 20.4):

Size Property: Every node has at most four children.

Depth Property: All the external nodes have the same depth.

Enforcing the size property for (2, 4) trees keeps the size of the nodes in the

multi-way search tree constant, for it allows us to represent the dictionary D(v)
stored at each internal node v using a constant-sized array. The depth property, on

the other hand, maintains the balance in a (2, 4) tree, by forcing it to be a bounded-

depth structure.

Theorem 20.2: The height of a (2, 4) tree storing n items is Θ(log n).

Proof: Let h be the height of a (2, 4) tree T storing n items. Note that, by the

size property, we can have at most 4 nodes at depth 1, at most 42 nodes at depth 2,

and so on. Thus, the number of external nodes in T is at most 4h. Likewise, by the

depth property and the definition of a (2, 4) tree, we must have at least 2 nodes at

depth 1, at least 22 nodes at depth 2, and so on. Thus, the number of external nodes

in T is at least 2h. In addition, by Theorem 20.1, the number of external nodes in

T is n + 1. Therefore, we obtain

2h ≤ n + 1 and n + 1 ≤ 4h.

Taking the logarithm in base 2 of each of the above terms, we get that

h ≤ log(n + 1) and log(n + 1) ≤ 2h,

which justifies our theorem.

3 4 117 8 13 14 17

12

5 10 15

6

Figure 20.4: A (2, 4) tree.
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Insertion in a (2, 4) Tree

Theorem 20.2 states that the size and depth properties are sufficient for keeping a

multi-way tree balanced. Maintaining these properties requires some effort after

performing insertions and removals in a (2, 4) tree, however. In particular, to insert

a new item (k, x), with key k, into a (2, 4) tree T , we first perform a search for k.

Assuming that T has no element with key k, this search terminates unsuccessfully

at an external node z. Let v be the parent of z. We insert the new item into node v
and add a new child w (an external node) to v on the left of z. That is, we add item

(k, x, w) to the dictionary D(v).
Our insertion method preserves the depth property, since we add a new external

node at the same level as existing external nodes. Nevertheless, it may violate the

size property. Indeed, if a node v was previously a 4-node, then it may become

a 5-node after the insertion, which causes the tree T to no longer be a (2, 4) tree.

This type of violation of the size property is called an overflow at node v, and it

must be resolved in order to restore the properties of a (2, 4) tree. Let v1, . . . , v5 be

the children of v, and let k1, . . . , k4 be the keys stored at v. To remedy the overflow

at node v, we perform a split operation on v as follows (see Figure 20.5):

• Replace v with two nodes v ′ and v ′′, where

◦ v ′ is a 3-node with children v1, v2, v3 storing keys k1 and k2

◦ v ′′ is a 2-node with children v4, v5 storing key k4.

• If v was the root of T , create a new root node u; else, let u be the parent of v.

• Insert key k3 into u and make v ′ and v ′′ children of u, so that if v was child

i of u, then v ′ and v ′′ become children i and i + 1 of u, respectively.

We show a sequence of insertions in a (2, 4) tree in Figure 20.6.

k1

v1

k2 k3 k4

v2 v3 v4 v5

u

u1 v=u2 u3

h1 h2

k1

v1

k2 k4

v2 v3 v4 v5

u

u1 v=u2 u3

h1 h2

k3

v1 v2 v3 v4 v5

u

u1 v' u3

h1 h2k3

k4k1 k2

v"

(a) (b) (c)

Figure 20.5: A node split: (a) overflow at a 5-node v; (b) the third key of v inserted

into the parent u of v; (c) node v replaced with a 3-node v ′ and a 2-node v ′′.

A split operation affects a constant number of nodes of the tree and O(1) items

stored at such nodes. Thus, it can be implemented to run in O(1) time.
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Figure 20.6: A sequence of insertions into a (2, 4) tree: (a) initial tree with one

item; (b) insertion of 6; (c) insertion of 12; (d) insertion of 15, which causes an

overflow; (e) split, which causes the creation of a new root node; (f) after the split;

(g) insertion of 3; (h) insertion of 5, which causes an overflow; (i) split; (j) after the

split; (k) insertion of 10; (l) insertion of 8.
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Performance of (2, 4) Tree Insertion

As a consequence of a split operation on node v, a new overflow may occur at the

parent u of v. If such an overflow occurs, it triggers, in turn, a split at node u. (See

Figure 20.7.) A split operation either eliminates the overflow or propagates it into

the parent of the current node. Indeed, this propagation can continue all the way up

to the root of the search tree. But if it does propagate all the way to the root, it will

finally be resolved at that point. We show such a sequence of splitting propagations

in Figure 20.7.

Thus, the number of split operations is bounded by the height of the tree, which

is O(log n) by Theorem 20.2. Therefore, the total time to perform an insertion in a

(2, 4) tree is O(log n).

3 4

5 1210

116 8 13 1514 3 4

5 1210

116 8 13 1514 17

(a) (b)

15

3 4 116 8 13 14 17

5 1210

3 4

5 1210

116 8

15

13 14 17

(c) (d)

12

3 4

5 10

116 8

15

13 14 17 3 4 116 8 13 14 17

12

5 10 15

(e) (f)

Figure 20.7: An insertion in a (2, 4) tree that causes a cascading split: (a) before

the insertion; (b) insertion of 17, causing an overflow; (c) a split; (d) after the split

a new overflow occurs; (e) another split, creating a new root node; (f) final tree.
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Removal in a (2, 4) Tree

Let us now consider the removal of an item with key k from a (2, 4) tree T . We

begin such an operation by performing a search in T for an item with key k. Re-

moving such an item from a (2, 4) tree can always be reduced to the case where

the item to be removed is stored at a node v whose children are external nodes.

Suppose, for instance, that the item with key k that we wish to remove is stored in

the ith item (ki, xi) at a node z that has only internal-node children. In this case,

we swap the item (ki, xi) with an appropriate item that is stored at a node v with

external-node children as follows (Figure 20.8d):

1. We find the right-most internal node v in the subtree rooted at the ith child

of z, noting that the children of node v are all external nodes.

2. We swap the item (ki, xi) at z with the last item of v.

Once we ensure that the item to remove is stored at a node v with only external-

node children (because either it was already at v or we swapped it into v), we

simply remove the item from v (that is, from the dictionary D(v)) and remove the

ith external node of v.

Removing an item (and a child) from a node v as described above preserves the

depth property, for we always remove an external-node child from a node v with

only external-node children. However, in removing such an external node we may

violate the size property at v. Indeed, if v was previously a 2-node, then it becomes

a 1-node with no items after the removal (Figure 20.8d and e), which is not allowed

in a (2, 4) tree. This type of violation of the size property is called an underflow

at node v. To remedy an underflow, we check whether an immediate sibling of v
is a 3-node or a 4-node. If we find such a sibling w, then we perform a transfer

operation, in which we move a child of w to be a child of v, a key of w to the parent

u of v and w, and a key of u to v. (See Figure 20.8b and c.) If v has only one sibling

that is a 2-node, or if both immediate siblings of v are 2-nodes, then we perform a

fusion operation, in which we merge v with a sibling, creating a new node v ′, and

move a key from the parent u of v to v ′. (See Figure 20.9e and f.)

A fusion operation at node v may cause a new underflow to occur at the parent

u of v, which in turn triggers a transfer or fusion at u. (See Figure 20.9.) Hence, the

number of fusion operations is bounded by the height of the tree, which is O(log n)
by Theorem 20.2. If an underflow propagates all the way up to the root, then the

root is simply deleted. (See Figure 20.9c and d.) We show a sequence of removals

from a (2, 4) tree in Figures 20.8 and 20.9.
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Figure 20.8: A sequence of removals from a (2, 4) tree: (a) removal of 4, causing

an underflow; (b) a transfer operation; (c) after the transfer operation; (d) removal

of 12, causing an underflow; (e) a fusion operation; (f) after the fusion operation;

(g) removal of 13; (h) after removing 13.
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Figure 20.9: A propagating sequence of fusions in a (2, 4) tree: (a) removal of 14,

which causes an underflow; (b) fusion, which causes another underflow; (c) second

fusion operation, which causes the root to be removed; (d) final tree.

Analysis of (2, 4) Trees

The following theorem summarizes the running times of the main operations of a

dictionary realized with a (2, 4) tree.

Theorem 20.3: A (2, 4) tree for n key-element items uses O(n) space and im-

plements the operations of a dictionary data structure with the following running

times. Finding an item, inserting an item, and removing an item each take time

O(log n).

The time complexity analysis is based on the following:

• The height of a (2, 4) tree storing n items is O(log n), by Theorem 20.2.

• A split, transfer, or fusion operation takes O(1) time.

• A search, insertion, or removal of an item visits O(log n) nodes.

Thus, (2, 4) trees provide for fast dictionary search and update operations.

(2, 4) trees also have an interesting relationship to the data structure we discuss

next, which is better suited for external memory.
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20.2.3 (a, b) Trees and B-Trees

Recalling the great time difference that exists between main memory accesses and

disk accesses, the main goal of maintaining a dictionary in external memory is to

minimize the number of disk transfers needed to perform a query or update. In fact,

the difference in speed between disk and internal memory is so great that we should

be willing to perform a considerable number of internal-memory accesses if they

allow us to avoid a few disk transfers. Let us, therefore, analyze the performance

of dictionary implementations by counting the number of disk transfers each would

require to perform the standard dictionary search and update operations.

Let us first consider some external-memory inefficient dictionary implementa-

tions based on sequences. If the sequence representing a dictionary is implemented

as an unsorted, doubly linked list, then insert and remove can be performed with

O(1) transfers each, assuming we know which block holds an item to be removed.

But, in this case, searching requires Θ(n) transfers in the worst case, since each

link hop we perform could access a different block. This search time can be im-

proved to O(n/B) transfers (see Exercise C-20.1), where B denotes the number

of nodes of the list that can fit into a block, but this is still poor performance. We

could alternately implement the sequence using a sorted array. In this case, a search

performs O(log2 n) transfers, via binary search, which is a nice improvement. But

this solution requires Θ(n/B) transfers to implement an insert or remove opera-

tion in the worst case, for we may have to access all blocks to move elements up

or down. Thus, sequence dictionary implementations are not efficient for external

memory.

If sequence implementations are inefficient, then perhaps we should consider

the logarithmic-time, internal-memory strategies that use balanced binary trees (for

example, AVL trees or red-black trees) or other search structures with logarithmic

average-case query and update times (for example, skip lists or splay trees). These

methods store the dictionary items at the nodes of a binary tree or of a graph. In

the worst case, each node accessed for a query or update in one of these structures

will be in a different block. Thus, these methods all require O(log2 n) transfers in

the worst case to perform a query or update operation. This is good, but we can

do better. In particular, we can perform dictionary queries and updates using only

O(logB n) = O(log n/ log B) transfers.

The main idea for improving the external-memory performance of the dictio-

nary implementations discussed above is that we should be willing to perform up

to O(B) internal-memory accesses to avoid a single disk transfer, where B denotes

the size of a block. The hardware and software that drives the disk performs this

many internal-memory accesses just to bring a block into internal memory, and

this is only a small part of the cost of a disk transfer. Thus, O(B) high-speed,

internal-memory accesses are a small price to pay to avoid a time-consuming disk

transfer.
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(a, b) Trees

To reduce the importance of the performance difference between internal-memory

accesses and external-memory accesses for searching, we can represent our dictio-

nary using a multi-way search tree, which is a generalization of the (2, 4) tree data

structure to a structure known as an (a, b) tree.

Formally, an (a, b) tree is a multi-way search tree such that each node has be-

tween a and b children and stores between a − 1 and b − 1 items. The algorithms

for searching, inserting, and removing elements in an (a, b) tree are straightforward

generalizations of the corresponding ones for (2, 4) trees. The advantage of gen-

eralizing (2, 4) trees to (a, b) trees is that a generalized class of trees provides a

flexible search structure, where the size of the nodes and the running time of the

various dictionary operations depends on the parameters a and b. By setting the

parameters a and b appropriately with respect to the size of disk blocks, we can

derive a data structure that achieves good performance for external memory.

An (a, b) tree, where a and b are integers, such that 2 ≤ a ≤ (b + 1)/2, is a

multi-way search tree T with the following additional restrictions:

Size Property: Each internal node has at least a children, unless it is the root, and

has at most b children.

Depth Property: All the external nodes have the same depth.

Theorem 20.4: The height of an (a, b) tree storing n items is Ω(log n/ log b) and

O(log n/ log a).

Proof: Let T be an (a, b) tree storing n elements, and let h be the height of T .

We justify the theorem by establishing the following bounds on h:

1

log b
log(n + 1) ≤ h ≤

1

log a
log

n + 1

2
+ 1.

By the size and depth properties, the number n ′′ of external nodes of T is at least

2ah−1 and at most bh. By Theorem 20.1, n ′′ = n + 1. Thus,

2ah−1 ≤ n + 1 ≤ bh.

Taking the logarithm in base 2 of each term, we get

(h − 1) log a + 1 ≤ log(n + 1) ≤ h log b.

We recall that in a multi-way search tree T , each node v of T holds a secondary

structure D(v), which is itself a dictionary (Section 20.2.1). If T is an (a, b) tree,

then D(v) stores at most b items. Let f(b) denote the time for performing a search

in a D(v) dictionary. The search algorithm in an (a, b) tree is exactly like the one

for multi-way search trees given in Section 20.2.1. Hence, searching in an (a, b)

tree T with n items takes O( f(b)
log a log n). Note that if b is a constant (and thus a is
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also), then the search time is O(log n), independent of the specific implementation

of the secondary structures.

The main application of (a, b) trees is for dictionaries stored in external memory

(for example, on a disk or CD/DVD-ROM). Namely, to minimize disk accesses, we

select the parameters a and b so that each tree node occupies a single disk block

(so that f(b) = 1 if we wish to simply count block transfers). Providing the right a
and b values in this context gives rise to a data structure known as the B-tree, which

we will describe shortly. Before we describe this structure, however, let us discuss

how insertions and removals are handled in (a, b) trees.

Insertion and Removal in an (a, b) Tree

The insertion algorithm for an (a, b) tree is similar to that for a (2, 4) tree. An

overflow occurs when an item is inserted into a b-node v, which becomes an illegal

(b+1)-node. (Recall that a node in a multi-way tree is a d-node if it has d children.)

To remedy an overflow, we split node v by moving the median item of v into the

parent of v and replacing v with a ⌈(b+1)/2⌉-node v ′ and a ⌊(b+1)/2⌋-node v ′′.

We can now see the reason for requiring a ≤ (b + 1)/2 in the definition of an

(a, b) tree. Note that as a consequence of the split, we need to build the secondary

structures D(v ′) and D(v ′′).

Removing an element from an (a, b) tree is also similar to what was done for

(2, 4) trees. An underflow occurs when a key is removed from an a-node v, distinct

from the root, which causes v to become an illegal (a − 1)-node. To remedy an

underflow, we either perform a transfer with a sibling of v that is not an a-node or

we perform a fusion of v with a sibling that is an a-node. The new node w resulting

from the fusion is a (2a − 1)-node. Here, we see another reason for requiring

a ≤ (b + 1)/2. Note that as a consequence of the fusion, we need to build the

secondary structure D(w).

Table 20.10 shows the running time of the main operations of a dictionary real-

ized by means of an (a, b) tree T .

Method Time

find O
(

f(b)
log a log n

)

insert O
(

g(b)
log a log n

)

remove O
(

g(b)
log a log n

)

Table 20.10: Time complexity of the main methods of a dictionary realized by an

(a, b) tree. We let f(b) denote the time to search a b-node and g(b) the time to split

or fuse a b-node. We also denote the number of elements in the dictionary with n.

The space complexity is O(n).
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The bounds in Table 20.10 are based on the following assumptions and facts:

• The (a, b) tree T is represented using the data structure described in Sec-

tion 20.2.1, and the secondary structure of the nodes of T support search in

f(b) time, and split and fusion operations in g(b) time, for some functions

f(b) and g(b), which can be made to be O(1) in the context where we are

only counting disk transfers.

• The height of an (a, b) tree storing n elements is at most O((log n)/(log a))
(Theorem 20.4).

• A search visits O((log n)/(log a)) nodes on a path between the root and an

external node, and spends f(b) time per node.

• A transfer operation takes f(b) time.

• A split or fusion operation takes g(b) time and builds a secondary structure

of size O(b) for the new node(s) created.

• An insertion or removal of an element visits O((log n)/(log a)) nodes on a

path between the root and an external node, and spends g(b) time per node.

Thus, we may summarize as follows.

Theorem 20.5: An (a, b) tree implements an n-item dictionary to support per-

forming insertions and removals in O((g(b)/ log a) log n) time, and performing

find queries in O((f(b)/ log a) log n) time.

B-Trees

A specialized version of the (a, b) tree data structure, which is an efficient method

for maintaining a dictionary in external memory, is the data structure known as

the “B-tree.” (See Figure 20.11.) A B-tree of order d is simply an (a, b) tree with

a = ⌈d/2⌉ and b = d. Since we discussed the standard dictionary query and update

methods for (a, b) trees above, we restrict our discussion here to the analysis of the

input/output (I/O) performance of B-trees.

7066 989575744543 635929241211 8583 864038 41 5048 51 53 56

3722 5846 8072 93

6542

Figure 20.11: A B-tree of order 6.
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Parameterizing B-trees for External Memory

The most important observation about B-trees is that we can choose d so that the d
children references and the d − 1 keys stored at a node can all fit into a single disk

block. That is, we choose d so that

d is Θ(B).

This choice also implies that we may assume that a and b are Θ(B) in the anal-

ysis of the search and update operations on (a, b) trees. Also, recall that we are

interested primarily in the number of disk transfers needed to perform various op-

erations. Thus, the choice for d also implies that

f(b) = c,

and

g(b) = c,

for some constant c ≥ 1, for each time we access a node to perform a search or

an update operation, we need only perform a single disk transfer. That is, f(b) and

g(b) are both O(1). As we have already observed above, each search or update

requires that we examine at most O(1) nodes for each level of the tree. Therefore,

any dictionary search or update operation on a B-tree requires only

O(log⌈d/2⌉ n) = O(log n/ log B)

= O(logB n)

disk transfers. For example, an insert operation proceeds down the B-tree to locate

the node in which to insert the new item. If the node would overflow (to have d + 1
children) because of this addition, then this node is split into two nodes that have

⌊(d + 1)/2⌋ and ⌈(d + 1)/2⌉ children, respectively. This process is then repeated

at the next level up, and will continue for at most O(logB n) levels. Likewise,

in a remove operation, we remove an item from a node, and, if this results in a

node underflow (to have ⌈d/2⌉− 1 children), then we either move references from

a sibling node with at least ⌈d/2⌉ + 1 children or we need to perform a fusion

operation of this node with its sibling (and repeat this computation at the parent).

As with the insert operation, this will continue up the B-tree for at most O(logB n)
levels. Thus, we have the following:

Theorem 20.6: A B-tree with n items executes O(logB n) disk transfers in a

search or update operation, where B is the number of items that can fit in one

block.

The requirement that each internal node have at least ⌈d/2⌉ children implies

that each disk block used to support a B-tree is at least half full. Analytical and

experimental study of the average block usage in a B-tree is that it is closer to 67%,

which is quite good.
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20.3 External-Memory Sorting

In addition to data structures, such as dictionaries, that need to be implemented in

external memory, there are many algorithms that must also operate on input sets

that are too large to fit entirely into internal memory. In this case, the objective is to

solve the algorithmic problem using as few block transfers as possible. The most

classic domain for such external-memory algorithms is the sorting problem.

A Lower Bound for External-Memory Sorting

As we discussed above, there can be a big difference between an algorithm’s per-

formance in internal memory and its performance in external memory. For ex-

ample, the performance of the radix-sorting algorithm is bad in external memory,

yet good in internal memory. Other algorithms, such as the merge-sort algorithm,

are reasonably good in both internal memory and external memory, however. The

number of block transfers performed by the traditional merge-sorting algorithm is

O((n/B) log2 n), where B is the size of disk blocks. While this is much better

than the O(n) block transfers performed by an external version of radix sort, it is,

nevertheless, not the best that is achievable for the sorting problem. In fact, we can

show the following lower bound, whose proof is beyond the scope of this book.

Theorem 20.7: Sorting n elements stored in external memory requires

Ω

(

n

B
·

log(n/B)

log(M/B)

)

block transfers, where M is the size of the internal memory.

The ratio M/B is the number of external-memory blocks that can fit into inter-

nal memory. Thus, this theorem is saying that the best performance we can achieve

for the sorting problem is equivalent to the work of scanning through the input set

(which takes Θ(n/B) transfers) at least a logarithmic number of times, where the

base of this logarithm is the number of blocks that fit into internal memory. We

will not formally justify this theorem, but we will show how to design an external-

memory sorting algorithm whose running time comes within a constant factor of

this lower bound.

Multi-way Merge-Sort

An efficient way to sort a set S of n objects in external memory amounts to a

simple external-memory variation on the familiar merge-sort algorithm. The main

idea behind this variation is to merge many recursively sorted lists at a time, thereby

reducing the number of levels of recursion. Specifically, a high-level description of

this multi-way merge-sort method is to divide S into d subsets S1, S2, . . ., Sd

of roughly equal size, recursively sort each subset Si, and then simultaneously
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merge all d sorted lists into a sorted representation of S. If we can perform the

merge process using only O(n/B) disk transfers, then, for large enough values of

n, the total number of transfers performed by this algorithm satisfies the following

recurrence:

t(n) = d · t(n/d) + cn/B,

for some constant c ≥ 1. We can stop the recursion when n ≤ B, since we can

perform a single block transfer at this point, getting all of the objects into internal

memory, and then sort the set with an efficient internal-memory algorithm. Thus,

the stopping criterion for t(n) is

t(n) = 1 if n/B ≤ 1.

This implies a closed-form solution that t(n) is O((n/B) logd(n/B)), which is

O((n/B) log(n/B)/ log d).

Thus, if we can choose d to be Θ(M/B), then the worst-case number of block

transfers performed by this multi-way merge-sort algorithm will be within a con-

stant factor of the lower bound given in Theorem 20.7. We choose

d = (1/2)M/B.

The only aspect of this algorithm left to specify, then, is how to perform the d-way

merge using only O(n/B) block transfers.

We perform the d-way merge by running a “tournament.” We let T be a com-

plete binary tree with d external nodes, and we keep T entirely in internal memory.

We associate each external node i of T with a different sorted list Si. We initialize

T by reading into each external node i, the first object in Si. This has the effect

of reading into internal memory the first block of each sorted list Si. For each

internal-node parent v of two external nodes, we then compare the objects stored

at v’s children and we associate the smaller of the two with v. We then repeat this

comparison test at the next level up in T , and the next, and so on. When we reach

the root r of T , we will associate the smallest object from among all the lists with

r. This completes the initialization for the d-way merge. (See Figure 20.12.)
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Figure 20.12: A d-way merge. We show a five-way merge with B = 4.
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In a general step of the d-way merge, we move the object o associated with the

root r of T into an array we are building for the merged list S ′. We then trace down

T , following the path to the external node i that o came from. We then read into i
the next object in the list Si. If o was not the last element in its block, then this next

object is already in internal memory. Otherwise, we read in the next block of Si to

access this new object (if Si is now empty, associate with the node i a pseudo-object

with key +∞). We then repeat the minimum computations for each of the internal

nodes from i to the root of T . This again gives us the complete tree T . We then

repeat this process of moving the object from the root of T to the merged list S ′,

and rebuilding T until T is empty of objects. Each step in the merge takes O(log d)
time; hence, the internal time for the d-way merge is O(n log d). The number of

transfers performed in a merge is O(n/B), since we scan each list Si in order once

and we write out the merged list S ′ once. Thus, we have the following:

Theorem 20.8: Given an array, S, of n elements stored in external memory,

we can sort S using O((n/B) log(n/B)/ log(M/B)) block transfers (I/Os) and

O(n log n) internal CPU time, where M is the size of the internal memory and B
is the size of a block.

Achieving “Near” Machine Independence

Using B-trees and external sorting algorithms can produce significant reductions in

the number of block transfers. The most important piece of information that made

such reductions possible was knowing the value of B, the size of a disk block (or

cache line). This information is, of course, machine-dependent, but it is one of the

few truly machine-dependent pieces of information that are needed, with one of the

others being the ability to store keys continuously in arrays.

From our description of B-trees and external sorting, we might think that we

also require low-level access to the external-memory device driver, but this is not

strictly needed in order to achieve the claimed results to within a constant factor.

In particular, in addition to knowing the block size, the only other thing we need

to know is that large arrays of keys are partitioned into blocks of continuous cells.

This allows us to implement the “blocks” in B-trees and our external-memory sort-

ing algorithm as separate B-sized arrays, which we call pseudo-blocks. If arrays

are allocated to blocks in the natural way, any such pseudo-block will be allocated

to at most two real blocks. Thus, even if we are relying on the operating system to

perform block replacement (for example, using FIFO, LRU, or the Marker policy

discussed later in Section 20.4), we can be sure that accessing any pseudo-block

takes at most two, that is, O(1), real block transfers. By using pseudo-blocks, then,

instead of real blocks, we can implement a dictionary to achieve search and up-

date operations that use only O(logB n) block transfers. We can, therefore, design

external-memory data structures and algorithms without taking complete control of

the memory hierarchy from the operating system.
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20.4 Online Caching Algorithms

An online algorithm responds to a sequence of service requests, each an associ-

ated cost. For example, a web page replacement policy maintains pages in a cache,

subject to a sequence of access requests, with the cost of a web page request be-

ing zero if the page is in the cache and one if the page is outside the cache. In

an online setting, the algorithm must completely finish responding to a service re-

quest before it can receive the next request in the sequence. If an algorithm is given

the entire sequence of service requests in advance, it is said to be an offline algo-

rithm. To analyze an online algorithm, we often employ a competitive analysis,

where we compare a particular online algorithm A to an optimal offline algorithm,

OPT . Given a particular sequence P = (p1, p2, . . . , pn) of service requests, let

cost(A, P ) denote the cost of A on P and let cost(OPT, P ) denote the cost of the

optimal algorithm on P . The algorithm A is said to be c-competitive for P if

cost(A, P ) ≤ c · cost(OPT, P ) + b,

for some constant b ≥ 0. If A is c-competitive for every sequence P , then we

simply say that A is c-competitive, and we call c the competitive ratio of A. If

b = 0, then we say that the algorithm A has a strict competitive ratio of c.

A well-known online problem, explained with a story, is the ski rental problem.

Alice has decided to try out skiing, but is uncertain whether she will like it or

whether she will be injured and have to stop. Each time Alice goes skiing, it costs

her x dollars to “rent” the necessary skiing equipment. Suppose it costs y dollars

to buy skis and the equipment that goes with them. Let us say, for the sake of the

story, that y is 10 times larger than x, that is, y = 10x. The dilemma for Alice

is to decide if and when she should buy the skiing equipment instead of renting

this equipment each time she goes skiing. For example, if she buys before her first

skiing trip and then decides she doesn’t like skiing, then she has spent 10 times

more than she should. But if she skis many times and never buys the equipment,

then she will spend potentially even more than 10 times more than she should. In

fact, if she skis n times, then this strategy of always “renting” will cause her to

spend n/10 times as many dollars as she should. That is, a strategy of buying the

first time has a worst-case competitive ratio of 10 and the always-rent strategy has

a worst-case competitive ratio of n/10. Neither of these choices is good.

Fortunately, Alice has a strategy with a competitive ratio of 2. Namely, she can

rent for 9 times and then buy the skiing equipment on the 10th day she skis. The

worst-case scenario is that she never uses the skis she just bought. So, in this case,

she spends 9x + y = 1.9y dollars, when she should have spent y = 10x; hence,

this strategy has a competitive ratio of 1.9. In fact, no matter how much bigger y
is than x, if Alice buys on day ⌈y/x⌉, and then buys, she will have a competitive

ratio of at most 2.
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20.4.1 Caching Algorithms

There are several applications that must deal with revisiting information presented

in pages. For instance, web page revisits have been shown to exhibit localities of

reference, both in time and in space. Similarly, the way in which a CPU access

disk pages tends to exhibit such localities as well. To exploit these localities of

reference, it is often advantageous to store copies of such pages in a cache memory,

so these pages can be quickly retrieved when requested again. In particular, suppose

we have a cache memory that has m “slots,” each of which can contain a web or

disk page, depending on the application. We assume that a page can be placed in

any slot of the cache. This is known as a fully associative cache.

As a browser executes, it requests different pages. Each time its requests such

a web page l, it must determine (using a quick test) whether l is unchanged and

currently contained in the cache. If l is contained in the cache, then the request

can be satisfied using the cached copy. If l is not in the cache, however, the page

for l is requested and transferred into the cache. If one of the m slots in the cache

is available, then the new page, l is assigned to one of the empty slots. But if all

the m cells of the cache are occupied, then the computer must determine which

previously loaded page to evict before bringing in l to take its place. There are,

of course, many different policies that can be used to determine the page to evict.

Some of the better-known page replacement policies include the following (see

Figure 20.13):

• First-in, First-out (FIFO): Evict the page that has been in the cache the

longest, that is, the page that was transferred to the cache furthest in the past.

• Least recently used (LRU): Evict the page whose last request occurred fur-

thest in the past.

In addition, we can consider a simple and purely random strategy:

• Random: Choose a page at random to evict from the cache.

The Random strategy is easy to implement, for it only requires a random or

pseudo-random number generator. The overhead involved in implementing this

policy is an O(1) additional amount of work per page replacement. Moreover, there

is no additional overhead for each page request, other than to determine whether

a page request is in the cache or not. Still, this policy makes no attempt to take

advantage of any temporal or spatial localities that a user’s browsing exhibits.

The FIFO strategy is quite simple to implement, as it only requires a queue

Q to store references to the pages in the cache. Pages are enqueued in Q when

they are referenced by a browser, and then are brought into the cache. When a

page needs to be evicted, the computer simply performs a dequeue operation on Q
to determine which page to evict. Thus, this policy also requires O(1) additional

work per page replacement. Also, the FIFO policy incurs no additional overhead

for page requests. Moreover, it tries to take some advantage of temporal locality.
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New block Old block (chosen at random)

Random policy:

New block Old block (present longest)

FIFO policy:

New block Old block (least recently used)

LRU policy:

insert time: 8:00am 9:05am 7:10am 7:30am 10:10am 8:45am7:48am

last used: 7:25am 9:22am 6:50am 8:20am 10:02am 9:50am8:12am

Figure 20.13: The Random, FIFO, and LRU page replacement policies.

The LRU strategy goes a step further than the FIFO strategy, which assumes

that the page that has been in the cache the longest among all those present is the

least likely to be requested in the near future. The LRU strategy explicitly takes

advantage of temporal locality, by always evicting the page that was least recently

used. From a policy point of view, this strategy is an excellent approach, but it is

costly from an implementation point of view. That is, its way of optimizing tempo-

ral and spatial locality is fairly costly. Implementing the LRU strategy requires the

use of a priority queue Q that supports searching for existing pages, for example,

using special pointers or “locators.” If Q is implemented with a sorted sequence

based on a linked list, then the overhead for each page request and page replacement

is O(1). Whenever we insert a page in Q or update its key, the page is assigned

the highest key in Q and is placed at the end of the list, which can also be done

in O(1) time. Even though the LRU strategy has constant-time overhead, using

the above implementation, the constant factors involved, in terms of the additional

time overhead and the extra space for the priority queue Q, make this policy less

attractive from a practical point of view.

Since these different page replacement policies have different trade-offs be-

tween implementation difficulty and the degree to which they seem to take advan-

tage of localities, it is natural for us to ask for some kind of comparative analysis

of these methods to see which one, if any, is the best.
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From a worst-case point of view, the FIFO and LRU strategies have fairly

unattractive competitive behavior. For example, suppose we have a cache con-

taining m pages, and consider the FIFO and LRU methods performing page re-

placement for a program that has a loop that repeatedly requests m + 1 pages in a

cyclic order. Both the FIFO and LRU policies perform badly on such a sequence

of page requests, because they perform a page replacement on every page request.

Thus, from a worst-case point of view, these policies are almost the worst we can

imagine—they require a page replacement on every page request.

This worst-case analysis is a little too pessimistic, however, for it focuses on

each protocol’s behavior for one bad sequence of page requests. An ideal analysis

would be to compare these methods over all possible page-request sequences. Of

course, this is impossible to do exhaustively, but there have been a great number of

experimental simulations done on page-request sequences derived from real pro-

grams. The experiments have focused primarily on the Random, FIFO, and LRU

policies. Based on these experimental comparisons, the ordering of policies, from

best to worst, is as follows: (1) LRU, (2) FIFO, and (3) Random. In fact, LRU is

significantly better than the others on typical request sequences, but it still has poor

performance in the worst case, as the following theorem shows.

Theorem 20.9: The FIFO and LRU page replacement policies for a cache with

m pages have competitive ratio at least m.

Proof: We observed above that there is a sequence P = (p1, p2, . . . , pn) of

page requests causing FIFO and LRU to perform a page replacement with each

request—the loop of m + 1 requests. We compare this performance with that of

the optimal offline algorithm, OPT , which, in the case of the page replacement

problem, is to evict from the cache the page that is requested the furthest into the

future. This strategy can only be implemented, of course, in the offline case, when

we are given the entire sequence P in advance, unless the algorithm is “prophetic.”

When applied to the loop sequence, the OPT policy will perform a page replace-

ment once every m requests (for it evicts the most recently referenced page each

time, as this one is referenced furthest in the future). Thus, both FIFO and LRU are

c-competitive on this sequence P , where

c =
n

n/m
= m.

Observe that if any portion P ′ = (pi, pi+1, . . . , pj) of P makes requests to m
different pages (with pi−1 and/or pj+1 not being one of them), then even the optimal

algorithm must evict one page. In addition, the most number of pages the FIFO and

LRU policies evict for such a portion P ′ is m, each time evicting a page that was

referenced prior to pi. Therefore, FIFO and LRU have a competitive ratio of m,

and this is the best possible competitive ratio for these strategies in the worst case.
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The Randomized Marker Algorithm

Even though the deterministic FIFO and LRU policies can have poor worst-case

competitive ratios compared to the “prophetic” optimal algorithm, we can show

that a randomized policy that attempts to simulate LRU has a good competitive

ratio. Specifically, let us study the competitive ratio of a randomized strategy that

tries to emulate the LRU policy. From a strategic viewpoint, this policy, which is

known as the Marker strategy, emulates the best aspects of the deterministic LRU

policy, while using randomization to avoid the worst-case situations that are bad

for the LRU strategy. The policy for Marker is as follows:

• Marker: Associate, with each page in the cache, a Boolean variable “marked,”

which is initially set to “false” for every page in the cache. If a browser re-

quests a page that is already in the cache, that page’s marked variable is set

to “true.” Otherwise, if a browser requests a page that is not in the cache, a

random page whose marked variable is “false” is evicted and replaced with

the new page, whose marked variable is immediately set to “true.” If all the

pages in the cache have marked variables set to “true,” then all of them are

reset to “false.” (See Figure 20.14.)

Competitive Analysis for a Randomized Online Algorithm

Armed with the above policy definition, we would now like to perform a compet-

itive analysis of the Marker strategy. Before we can do this analysis, however, we

must first define what we mean by the competitive ratio of a randomized online

algorithm. Since a randomized algorithm A, like the Marker policy, can have many

different possible runs, depending upon the random choices it makes, we define

such an algorithm to be c-competitive for a sequence of requests P if

E(cost(A, P )) ≤ c · cost(OPT, P ) + b,

for some constant b ≥ 0, where E(cost(A, P )) denotes the expected cost of algo-

rithm A on the sequence P (with this expectation taken over all possible random

choices for the algorithm A). If A is c-competitive for every sequence P , then we

simply say that A is c-competitive, and we call c the competitive ratio for A.

New block Old block (unmarked)

Marker policy:

marked:

Figure 20.14: The Marker page replacement policy.
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Theorem 20.10: The Marker page policy for a cache with m pages has compet-

itive ratio 2 log m.

Proof: Let P = (p1, p2, . . . , pn) be a sufficiently long sequence of page requests.

The Marker policy implicitly partitions the requests in P into rounds. Each round

begins with all the pages in the cache having “false” marked labels, and a round

ends when all the pages in the cache have “true” marked labels (with the next

request beginning the next round, since the policy then resets each such label to

“false”). Consider the ith round in P , and call a page requested in round i fresh

if it is not in the Marker policy’s cache at the beginning of round i. Also, we

refer to a page in the Marker’s cache that has a false marked label stale. Thus,

at the beginning of a round i, all the pages in the Marker policy’s cache are stale.

Let mi denote the number of fresh pages referenced in the ith round, and let bi

denote the number of pages that are in the cache for the OPT algorithm at the

beginning of round i and are not in the cache for the Marker policy at this time.

Since the Marker policy has to perform a page replacement for each of the mi

requests, algorithm OPT must perform at least mi−bi page replacements in round i.
(See Figure 20.15.) In addition, since each of the pages in the Marker policy’s cache

at the end of round i are requested in round i, algorithm OPT must perform at least

bi+1 page replacements in round i. Thus, the algorithm OPT must perform at least

max{mi − bi, bi+1} ≥
mi − bi + bi+1

2
page replacements in round i. Summing over all k rounds in P then, we see that

algorithm OPT must perform at least the following number of page replacements:

L =

k
∑

i=1

mi − bi + bi+1

2
= (bk+1 − b1)/2 +

1

2

k
∑

i=1

mi.

Next, let us consider the expected number of page replacements performed by

the Marker policy.

We have already observed that the Marker policy has to perform at least mi

page replacements in round i. It may actually perform more than this, however, if

it evicts stale pages that are then requested later in the round. Thus, the expected

number of page replacements performed by the Marker policy is mi + ni, where

ni is the expected number of stale pages that are referenced in round i after having

been evicted from the cache. The value ni is equal to the sum, over all stale pages

referenced in round i, of the probability that these pages are outside of the cache

when referenced. At the point in round i when a stale page v is referenced, the

probability that v is out of the cache is at most f/g, where f is the number of fresh

pages referenced before page v and g is the number of stale pages that have not

yet been referenced. This is because each reference to a fresh page evicts some

unmarked stale page at random. The cost to the Marker policy will be highest then,

if all mi requests to fresh pages are made before any requests to stale pages. So,

assuming this worst-case viewpoint, the expected number of evicted stale pages
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marked:

all stale

mi fresh blocks to be referenced in round i

Marker’s cache:

OPT’s cache:

bi blocks not in Marker’s cache blocks also in Marker’s cache

Figure 20.15: The state of Marker’s cache and OPT’s cache at the beginning of

round i.

referenced in round i can be bounded as follows:

ni ≤
mi

m
+

mi

m − 1
+

mi

m − 2
+ · · · +

mi

mi + 1

≤ mi

m
∑

j=1

1

j
,

since there are m − mi references to stale pages in round i. Noting that this sum-

mation is known as the mth harmonic number, which is denoted Hm, we have

ni ≤ miHm.

Thus, the expected number of page replacements performed by the Marker policy

is at most

U =
k

∑

i=1

mi(Hm + 1) = (Hm + 1)
k

∑

i=1

mi.

Therefore, the competitive ratio for the Marker policy is at most

U

L
=

(Hm + 1)
∑k

i=1 mi

(1/2)
∑k

i=1 mi

= 2(Hm + 1).

Using an approximation for Hm, namely that Hm ≤ log m, the competitive ratio

for the Marker policy is at most 2 log m.

Thus, the competitive analysis shows that the Marker policy is fairly efficient.
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20.5 Exercises

Reinforcement

R-20.1 Describe, in detail, the insertion and removal algorithms for an (a, b) tree.

R-20.2 Suppose T is a multi-way tree in which each internal node has at least five and at

most eight children. For what values of a and b is T a valid (a, b) tree?

R-20.3 For what values of d is the tree T of the previous exercise an order-d B-tree?

R-20.4 Draw the order-7 B-tree resulting from inserting the following keys (in this order)

into an initially empty tree T :

(4, 40, 23, 50, 11, 34, 62, 78, 66, 22, 90, 59, 25, 72, 64, 77, 39, 12).

R-20.5 Show each level of recursion in performing a four-way, external-memory merge-

sort of the sequence given in the previous exercise.

R-20.6 Consider the generalization of the renter’s dilemma where Alice can buy or rent

her skis separate from her boots. Say that renting skis costs a dollars, whereas

buying skis costs b dollars. Likewise, say that renting boots costs c dollars,

whereas buying boots costs b dollars. Describe a 2-competitive online algorithm

for Alice to try to minimize the costs for going skiing subject to the uncertainty

of her not knowing how many times she will continue to go skiing in the future.

R-20.7 Consider an initially empty memory cache consisting of four pages. How many

page misses does the LRU algorithm incur on the following page-request se-

quence?

(2, 3, 4, 1, 2, 5, 1, 3, 5, 4, 1, 2, 3)

R-20.8 Consider an initially empty memory cache consisting of four pages. How many

page misses does the FIFO algorithm incur on the following page-request se-

quence?

(2, 3, 4, 1, 2, 5, 1, 3, 5, 4, 1, 2, 3)

R-20.9 Consider an initially empty memory cache consisting of four pages. How many

page misses does the marker algorithm incur on the following page-request se-

quence: (2, 3, 4, 1, 2, 5, 1, 3, 5, 4, 1, 2, 3)? Show the random choices your algo-

rithm made.

R-20.10 Consider an initially empty memory cache consisting of four pages. Construct

a sequence of memory requests that would cause the marker algorithm to go

through four rounds.
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Creativity

C-20.1 Show how to implement a dictionary in external memory, using an unordered se-

quence so that insertions require only O(1) transfers and searches require O(n/B)
transfers in the worst case, where n is the number of elements and B is the num-

ber of list nodes that can fit into a disk block.

C-20.2 Describe a modified version of the B-tree insertion algorithm so that each time

we create an overflow because of a split of a node v, we redistribute keys among

all of v’s siblings, so that each sibling holds roughly the same number of keys

(possibly cascading the split up to the parent of v). What is the minimum fraction

of each block that will always be filled using this scheme?

C-20.3 Another possible external-memory dictionary implementation is to use a skip

list, but to collect consecutive groups of O(B) nodes, in individual blocks, on

any level in the skip list. In particular, we define an order-d B-skip list to be

such a representation of a skip-list structure, where each block contains at least

⌈d/2⌉ list nodes and at most d list nodes. Let us also choose d in this case

to be the maximum number of list nodes from a level of a skip list that can

fit into one block. Describe how we should modify the skip-list insertion and

removal algorithms for a B-skip list so that the expected height of the structure

is O(log n/ log B).

C-20.4 Suppose that instead of having the node-search function f(d) = 1 in an order-d
B-tree T , we instead have f(d) = log d. What does the asymptotic running time

of performing a search in T now become?

C-20.5 Consider the page caching problem where the memory cache can hold m pages,

and we are given a sequence P of n requests taken from a pool of m+1 possible

pages. Describe the optimal strategy for the offline algorithm and show that it

causes at most m + n/m page misses in total, starting from an empty cache.

C-20.6 Consider the page caching strategy based on the least frequently used (LFU)

rule, where the page in the cache that has been accessed the least often is the one

that is evicted when a new page is requested. If there are ties, LFU evicts the

least frequently used page that has been in the cache the longest. Show that there

is a sequence P of n requests that causes LFU to miss Ω(n) times for a cache of

m pages, whereas the optimal algorithm will miss only O(m) times.

C-20.7 Show that LRU is m-competitive for any sequence of n page requests, where m
is the size of the memory cache.

C-20.8 Show that FIFO is m-competitive for any sequence of n page requests, where m
is the size of the memory cache.

C-20.9 What is the expected number of block replacements performed by the Random

policy on a cache of size m, for an access sequence of length n, that iteratively

accesses m + 1 blocks in a cyclic fashion (assuming n is much larger than m)?

C-20.10 Show that the Marker algorithm is Hm-competitive when the size of the cache is

m and there are m + 1 possible pages that can be accessed, where Hm denotes

the mth Harmonic number.
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Applications

A-20.1 Suppose you are processing a large number of operations in a consumer-producer

process, such as a buffer for a large media stream. Describe an external-memory

data structure to implement a queue so that the total number of disk transfers

needed to process a sequence of n enqueue and dequeue operations is O(n/B).

A-20.2 Imagine that you are trying to construct a minimum spanning tree for a large net-

work, such as is defined by a popular social networking website. Based on using

Kruskal’s algorithm, the bottleneck is the maintenance of a union-find data struc-

ture. Describe how to use a B-tree to implement a union-find data structure (from

Section 7.1) so that union and find operations each use at most O(log n/ log B)
disk transfers each.

A-20.3 Suppose you are processing an automated course registration program. The data

set in this case is a large file of N course numbers, one for each course request

made by a student. Show that you can count the number of requests made for

each course, using O((N/B) log(N/B)/ log(M/B)) I/Os.

A-20.4 In the MapReduce framework, for performing a parallel computation, a crucial

step involves an input that consists of a set of n key-value pairs, (k, v), for which

we need to collect each subset of key-value pairs that have the same key, k, into a

single file. Describe an efficient external-memory algorithm for constructing all

such files. How many disk transfers does your algorithm perform?

A-20.5 Suppose Alice is faced with the ski rental problem, where buying skis is 20 times

more expensive than renting. In this case, however, Alice notices that she has a

fair coin in her pocket and is willing to consider a randomized strategy. Show

that she can use her coin to come up with a strategy with an expected competitive

ratio of 1.8 or better.

Chapter Notes

B-trees were invented by Bayer and McCreight [23] and Comer [47] provides a very nice

overview of this structure. The books by Mehlhorn [157] and Samet [182] also discuss

B-trees and their variants. Aho, Hopcroft, and Ullman [8] discuss (2, 3) trees, which are

similar to (2, 4) trees. Arge and Vitter [12] present a weight-balanced B-tree, which has a

number of nice properties. Knuth [131] has very nice discussions about external-memory

sorting and searching. Aggarwal and Vitter [6] study the I/O complexity of sorting and

related problems, establishing upper and lower bounds. Goodrich et al. [90] study the I/O

complexity of several computational geometry problems. The reader interested in further

study of I/O-efficient algorithms is encouraged to examine the book by Vitter [211].

The reader interested in further study of online algorithms is referred to the book by

Borodin and El-Yaniv [34] or the paper by Koutsoupias and Papadimitriou [134]. The

marker caching algorithm is discussed in the book by Borodin and El-Yaniv; our discussion

is modeled after a similar discussion in by Motwani and Raghavan [162]. Exercises C-20.7

and C-20.8 come from Sleator and Tarjan [196].


